114 MATHEMATICS ## EXERCISE 7.1 - 1. Which of the following numbers are not perfect cubes? - (i) 216 - (ii) 128 - (iii) 1000 - (iv) 100 - (v) 46656 - Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube. - (i) 243 - (ii) 256 - (iii) 72 - (iv) 675 - (v) 100 - Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube. - (i) 81 - (ii) 128 - (iii) 135 - (iv) 192 - (v) 704 - 4. Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube? ## 7.3 Cube Roots If the volume of a cube is 125 cm³, what would be the length of its side? To get the length of the side of the cube, we need to know a number whose cube is 125. Finding the square root, as you know, is the inverse operation of squaring. Similarly, finding the cube root is the inverse operation of finding cube. We know that $2^3 = 8$; so we say that the cube root of 8 is 2. We write $\sqrt[3]{8} = 2$. The symbol $\sqrt[3]{}$ denotes 'cube-root.' Consider the following: | Statement | Inference | |-------------|------------------------------------| | 13=1 | ∛ 1 = 1 | | $2^3 = 8$ | $\sqrt[3]{8} = \sqrt[3]{2^3} = 2$ | | $3^3 = 27$ | $\sqrt[3]{27} = \sqrt[3]{3^3} = 3$ | | $4^3 = 64$ | $\sqrt[3]{64} = 4$ | | $5^3 = 125$ | ∛ 125 = 5 | | Statement | Inference | |-------------|-----------------------| | $6^3 = 216$ | ³ √216 = 6 | | $7^3 = 343$ | 3√343 = 7 | | $8^3 = 512$ | 3√512 = 8 | | 93 = 729 | 3√729 = 9 | | 103 = 1000 | ₹1000 = 10 | ## 7.3.1 Cube root through prime factorisation method Consider 3375. We find its cube root by prime factorisation: $$3375 = 3 \times 3 \times 3 \times 5 \times 5 \times 5 = 3^3 \times 5^3 = (3 \times 5)^3$$ Therefore, cube root of $3375 = \sqrt[3]{3375} = 3 \times 5 = 15$ Similarly, to find \$\sqrt{74088}\$, we have,